
TechLab_Report19

Our view on
what matters
in tech

Make change happen
Want to talk about exactly what this thinking means for you? Get in touch.

hello@red-badger.com

Get set for what’s next
Here’s what you need to know

Once a year our software and test
engineers come together to share
what matters in tech and how we
apply it for our clients. The result is
this Red Badger TechLab_Report19
which aims to help you confidently
get set for what’s next.

This report is inspired by our commitment to making
things better. Everything you’ll read here comes
directly from our people and was written based on
first-hand experience. We hope our words will point
you towards something useful that will change your
(work) life and help you drive meaningful change in
your organisation.

As we all get stuck into 2019, it’s worth taking a
moment to reflect on last year. History will mark 2018
as the beginning of the mass adoption of Kubernetes
container orchestration. Why is this significant?
Kubernetes is a game changer. It’s the product of
an immense collaboration between developers and
operations (DevOps). It embodies all the principles we
talk about in this report, enabling us to move faster
than we ever did. As a result, we can now measure
the time it takes for a software update to get from
a developer’s hands to a user’s hands in seconds –
even at web-scale. This is True Agile.

So, what will 2019 be known for? Service mesh. When
we add service mesh (e.g. Istio) into the equation
we have a new standard platform for distributed
microservice applications – one that’s taking over
the world. Imagine this platform as a homogeneous
substrate, onto which you can declaratively deploy
any containerised workload. It looks exactly the same
everywhere: in any cloud, on-premise, or hybrid. It
will take care of all your cross-cutting concerns and
non-functional requirements. Think scaling, healing,
security, resilience, reliability, and observability,
to name a few. Most importantly, it allows you to
concentrate on the value you want to add. It takes
care of your tricky, sticky tech challenges, freeing you
up to focus on your core business logic and, most
importantly, your customers.

Change is a constant, and its pace is accelerating.
But when you’re equipped with the right knowledge,
insights, and solutions, you’re set up for success and
can enjoy the ride.

1

Sh
Stu Harris

Stu Harris
Chief Scientist
and Founder

hello@red-badger.com

mailto:hello%40red-badger.com?subject=I%27ve%20read%20your%20TechLab_Report%20and%20I%20would%20like%20to%20find%20out%20more

Red Badger | TechLab_Report19 3

A quick overview
The report explores these themes

Common problem areas
Read about problems that many of our clients
come to us with, along with our insights on how
to set things right.

Our specialisms
Our core specialisms have evolved out of the needs
we’ve seen in countless businesses over the years.
Dive in to find out how we can use our core strengths
to devise solutions tailored to your organisation.

Tools and technology
We’re always trying out new tools and technology,
so we can help our clients make the right choices
for their businesses. Explore a few that we are
particularly excited about, see what makes them
interesting, and why we think they might be useful
in solving client problems.

Our engineering principles
Explore the guiding principles that underpin all our
engineering decisions and discover how these help us
deliver insight, direction and support to our clients and
their customers.

Red Badger | TechLab_Report19 4

Common problem areas
Challenges you may be
experiencing

Time and again, we witness similar
issues cropping up in clients’
businesses, from building software
right through to testing, deployment,
infrastructure, scaling and reliability.
Here are some typical problems
our clients come to us with, along
with our insights on how to set
things right.

Delivery speed and agility
Effective, timely software delivery requires close
collaboration between product, delivery, and
technology. In order to remain competitive, reduce
waste, and respond to customers’ needs promptly,
short lead times – the duration a piece of work takes
from ideation to being live – are essential.

In software delivery, fast iteration is the most important
enabler and, by using a combination of techniques,
lead times can be improved from several months
to just a few hours – without sacrificing reliability or
quality. These things will help:

Implement data-driven product management
Data-driven product management forms a product
backlog based on user research and analysis of the
ways users interact with software. Rapid prototyping
and mechanisms for the small-scale release of
features and A/B testing allow you to validate ideas
quickly and in a low-risk, cost-efficient way.

Use agile delivery processes
Robust, agile delivery process and practices enable
the creation of autonomous, empowered cross-
functional teams. These teams have all the tools
necessary to succeed. They’re also data-driven,
striving to continuously iterate and improve their
ability to deliver high-quality software.

Culture

Strategy

Speed

Quality

Red Badger | TechLab_Report19 5

Common problem areas
Challenges you may be experiencing

Make continuous delivery happen
Technology enables the continuous delivery of value
to customers. Techniques such as feature flags, canary
deployments, A/B testing and close monitoring of the
systems let you gradually release new features with
minimal risk. Building analytics into products from the
beginning allows for powerful insight generation, to
help inform the future roadmap of the product.

High velocity in software delivery requires high levels
of automation. Human gates should be replaced
with automated checks wherever possible. Code
deployments and health-checking should be fully
automated, including the ability to roll back if things
aren’t looking good. Approaches such as this can help
make continuous deployment to production a reality,
providing value to customers as quickly and robustly
as possible.

Good news – speed of delivery has an added benefit.
You’ll soon notice everyone involved in building the
software relishes the fast feedback and the autonomy
required to perform at that level. Continuous delivery
has been shown to correlate with more open
collaborative cultures. And – even more good news –
scaling an organisation composed from autonomous
self-sufficient teams is much easier.

Reliability and scalability of service
There’s nothing more disappointing than an outage
of an application serving all your customers. These
systems take significant time and investment to deliver
and they typically fail at the time they’re most needed
– when most people try to use them. Outages result in
lost revenue and, often, bad press too.

Scale – elastically
A web or mobile service’s demands on computing
resources grow with the customer demand of the
service. Sometimes the capacity needed at the peak
of demand is thousands of times higher than in the
middle of a quiet night. In order to fulfil it, services
need to elastically scale, by adding resources as
they’re needed. Otherwise, your spare capacity will
likely go to waste. And you’ll still end up paying for it.

This requires infrastructure automation commonly
supported by cloud computing services, but also a
system design that can use the added resources
effectively – a property known as horizontal scalability.
Applications need to be packaged in a portable
way and able to start within seconds, when a new,
independent instance is needed to serve more
customers. These assumptions are the foundation of
the current infrastructure tools, such as Docker and
Kubernetes.

Look to smart integration layers
Horizontal scalability is especially challenging for
applications which integrate with legacy systems
running on physical hardware. These systems can’t
scale easily. Smart integration layers are often a
good way to isolate the effects of them reaching their
capacity limits from the customer-facing application.

Red Badger | TechLab_Report19 6

Common problem areas
Challenges you may be experiencing

Unlock the power of continuous delivery
An added benefit of having an application and
infrastructure design which scales easily is the ability
to create development and testing environments in
minutes, enabling the continuous delivery of new
features. The risk posed by changes can be reduced
by using methods whereby they’re released gradually
to a small subset of customers first, before dialling the
number up. And if a change does cause an outage,
full automation makes it much easier to quickly restore
the service.

Manage risk
Special consideration is needed for monitoring web
scale production systems. Real-time performance
metrics, observability, and well-tuned alarms are a
must. Why? Because every minute of outage can cost
thousands of pounds. Think e-commerce systems
going down in the weeks coming up to Christmas, or
flight operations systems outages causing chaos.

Empower your teams
Scalable and reliable systems are far more complex
than many people first assume. Teams should be
given the time and autonomy to learn to operate
them safely. Some incidents in the early stages are
inevitable, but they should be used as lessons to
improve the system.

It’s also important to point out that while cloud
computing is a great enabler of scalable and reliable
systems, many expect it will also reduce their like-
for-like infrastructure costs. Be warned – this is rarely
the case. But the spend is well worth it to prevent
expensive disasters.

Strategic direction
At the end of the day, technology is a means to an
end. The goal is to deliver value to customers. The
tech should be subservient to this goal. And it
should be invisible. Too many organisations let tech
choices drive a solution when it ought to be the other
way around.

Forgetting the customer comes at a cost
Technology departments spend years – and millions
– on strategic shared solutions for infrastructure,
deployment and monitoring tools. These efforts are so
complex they often never deliver and product delivery
teams are left with perpetually tactical solutions
which barely work, slow down product delivery, and
cause outages. To make matters worse, technology
initiatives are run as projects and often completely
ignore even internal customers, let alone the end
customers, treating them as subjects of governance.

Make it about products, not projects
Instead of being project focussed and building from
the back to the front, we should be product focussed
and build from the front to the back. Projects start
and end, then the money goes somewhere else. But
products live on, especially if it’s all about the product
and we work backwards from a true understanding of
customers’ needs. With this way of working, we only
build what we need to support those needs, keeping
things as simple and agile as possible.

Red Badger | TechLab_Report19 7

Common problem areas
Challenges you may be experiencing

Stay curious
To win at the product-first approach, we have to keep
up to date with the technology choices available
to us. We have a problem to solve and we want
the widest choice we can get, so we can select
the most appropriate tech to serve us. This means
understanding and navigating the open source
revolution that continues to change our world. It
means trying out new tech, new ideas, and new
patterns, and being bold. It’s ok to fail early, cheaply,
and to abandon experiments that aren’t going to work.
That’s where the learning happens.

Like taking a thousand photos in the hope of getting
one good one, innovation is born from experiments
bravely conducted by autonomous teams with a deep
sense of where they’re going. And where the industry
is going. These kinds of teams pick up trends early,
steal a march on competition, and buy themselves
precious time to spend on evolving value. With
awareness of open source trends, making the right
strategic bet when technologies mature (think React
Native or Kubernetes this year) is easy. Just rely on
the evidence from your in-house experiments.

An added benefit? A culture of experimentation
makes it significantly easier to hire brilliant, ever-
curious engineers.

Engineering culture
Engineering culture problems aren’t always easy
to identify, but there are some telltale signs we’ve
noticed over the years of supporting our clients with
all-things tech. If you spot these problems in your
teams, it’s time to take action.

The rest of the business keeps away
If other departments avoid engaging with the
technology department, a storm may be brewing. You
may notice that, if other departments do engage, the
technology department is just perceived as a cost
centre, not an opportunity to add value. In these kinds
of scenarios, the technology department is rarely
invited to help with product decisions.

Silos are stifling projects
When it comes to projects, siloed teams separately
work on code, testing, infrastructure, and operations.
Projects feel like they’re thrown over the fence and
they take a long time to deliver – if they even get
delivered at all. When a project is delivered, end users
only see value when the whole project is complete.

New talent isn’t interested
It’s a constant struggle to hire and retain developers,
plain and simple. When you ask candidates why
they’re not keen to join, they’re not forthcoming. There
seem to be so many more exciting opportunities for
them in the market.

Red Badger | TechLab_Report19 8

Common problem areas
Challenges you may be experiencing

There’s no autonomy, or there’s full-on anarchy
All too often, developers are seen as code writers
to be strictly managed. In these instances, the same
technology and approaches are applied to every
problem. Deviations from this are quickly stopped and
new technologies and tools are rarely introduced. At
the other end of the scale lies anarchy. In these kinds
of scenarios, nothing gets done. The systems built
are complex and riddled with defects. Developers
prioritise fixing problems that users will never see,
often jeopardising the customer experience in the final
product. When something goes wrong, nobody takes
ownership or steps up to fix it.

Of course, the sweet spot is somewhere between
autonomy and anarchy. Here, you can reap all sorts of
benefits and stay immune from extremes.

Here’s how to solve a culture problem
The most potent remedy we know of is striving for
continuous delivery. This enables organisations to
reduce the amount of planning, and react to business
and customer needs faster. It requires a lot of changes
in the organisation, chief among them the move
from functional silos to autonomous, cross-functional
teams. People on such teams feel more empowered,
they have more knowledge of the domain, take more
ownership, and ultimately enjoy the work more.
Continuous delivery also needs to be supported by
flexible infrastructure and good testing strategy with
high levels of automation.

A final word – it’s worth it. Engineering culture takes
a long time to foster. Trusting people and giving
them time to learn is essential. But the return on this
investment can be immense, enabling you to respond
to changing customer and business needs within
hours, and outmaneuvre your competitors. All with
happy, thriving tech teams.

Red Badger | TechLab_Report19 9

Our specialisms
Solving your business’s
biggest problems

Our core specialisms have evolved
out of needs we’ve seen in countless
businesses over the years. We know
what to focus on, which tools will
help, and which principles to be
guided by. We harness our deep and
wide expertise in these capability
areas and devise solutions tailored to
your organisation.

Continuous delivery
In the midst of Digital Transformation, speed is the
most important metric technology departments
should focus on. With the right speed, you can deliver
features and fix problems in production systems at a
moment’s notice, several times a day.

To do that safely, you need to invest in establishing
a set of systems and practices that enable the
continuous delivery of value, without compromising
quality and reliability.

Aim for continuous deployment to production
Continuous integration and continuous deployment
(CI/CD) are well-known automation practices which
have become widely used to deliver software quickly
and safely. Quite often, however, these automaton
pipelines only go as far as a testing or ‘staging’
environment, where code changes and infrastructure
changes build until such a time as a decision maker
says it’s time to push the button to go live.

While this is great for the development process, you’ll
then most likely hit the same issues you’re trying to
avoid during development in your deployment into
production. Continuous deployment to production
essentially takes these practices one step further – all
the way to production.

Make small changes, often
Continuous deployment to production means every
feature is “done” when it’s running in production.
The process generally starts when a feature or
a part of a feature has been written by (a pair of)
engineers, reviewed, and merged into the master
branch of a repository. The automation then kicks in
to run all the tests and any other automated quality
checks, eventually ending with a deployment to the
production environment, in front of customers, with no
further manual gates.

Making small changes often has been proven to help
de-risk software delivery. Small changes made in the
morning and deployed in the afternoon allow for any
small issues after deployment to be easily tracked
down, debugged, and fixed quickly – even if your
automated checks didn’t catch them (which, over time,
becomes pretty rare).

Red Badger | TechLab_Report19 10

Our specialisms
Solving your business’s biggest problems

Experience the benefits
The benefits of constantly shipping small changes
to production aren’t limited to quality and reliability.
Product, user experience, visual design and ultimately
your customers also benefit from these changes as
the time through the deployment loop is the lower
bound on how quickly things can change and adapt.
With continuous delivery, it can be significantly
reduced. This allows a full change in how you
go about product delivery, enabling a shift to a
continuous build, measure and learn cycle.

Quite simply, continuous delivery (and infrastructure to
support it) is the number one strategic capability you
need to have.

Infrastructure
Application infrastructure – servers, load balancers,
name servers, and more – can be one of the biggest
barriers to fast, agile delivery. But it also has the
potential to be your biggest enabler, and it’s one of
the most important areas to focus on getting right.

Infrastructure’s come a long way
Setting up infrastructure used to involve screwdrivers
and typing commands using a keyboard attached to a
serial port in a noisy, cold data centre. The processes
were slow, expensive, and very prone to human error.
Updates and patches had to be applied manually,
to each individual machine, and this effort required
dedicated teams. The manual aspect to all this also
made it incredibly easy to end up with ‘snowflake
servers’ – servers that are unique, irreplaceable, and
a liability.

Innovation has shaken things up
Over the past decade the industry has made
incredible progress. Virtual Machines (VMs) and Virtual
Networks brought the dawn of cloud computing,
which grew to a full offering of Infrastructure as a
Service (IaaS). Think VMs, Virtual Networks, block
storage, firewalls, load balancers, gateways, and more.
The key innovation was that IaaS had an API. We
could suddenly write programs to build infrastructure,
resulting in the practice known as Infrastructure as
Code (IaC).

Tools like Terraform make the process of setting
things up fully repeatable and allow us to have
development and production environments that are
nearly identical. In turn, this helps catch issues earlier
in the process and enables various kinds of testing
(performance, penetration, etc.) to be done outside
the production environment.

Containers and cluster orchestration
are changing the game
The next leap in infrastructure came with containers
– an Operating System level virtualisation. Container
technology (the most popular being Docker) made
it possible to package software written in various
languages in a uniform, portable way. It also made it
possible to deploy multiple containers onto a single
VM. This meant better utilisation, and improvements in
the time taken to deploy or scale up an application.

The next big leap forwards in the infrastructure space
is happening right now. Cluster orchestration software,
such as Kubernetes, solves the problems that emerge
when you run lots of containers on a cluster of
virtual machines – from orchestrating zero downtime
deployments to handling machine failures. This
creates a reliable, self-healing, easy-to-scale runtime
surface. With this in place, application teams can focus
more energy on delivering application features and
customer value.

Red Badger | TechLab_Report19 11

Our specialisms
Solving your business’s biggest problems

Smart infrastructure will serve you
Infrastructure is a key area of strategic investment
for organisations. The focus should be on reusable
solutions that enable continuous delivery and increase
autonomy of teams as much as possible.

The latest generation of infrastructure tools and
technologies makes this easier than ever.

Testing and quality assurance
Testing is heading into a new paradigm – one shaped
by self-healing systems, observable platforms, and
everything as code. Gone are the days when working
software was enough of a barometer of quality. Recent
years have seen the testing function move from the
diagnosis of issues to their prevention. This trend is
set to gather pace.

Embrace observability
The rise in applications built with observability in
mind allows for a broader perspective on the overall
state of an application. In embracing observability, we
accept that failures will always occur and direct our
efforts towards making unknowns manageable when
they arise. The modern tester will play a large part
in the incremental improvements of such systems.
This will require a shift of focus from more traditional
independent components, such as user interfaces or
APIs, towards incorporating the monitoring of overall
platform health into test strategies.

Think ‘everything as code’
The advent of the ‘everything as code’ approach and
the ever-increasing reliance on automation of process,
application builds, type checking and test suites have
drastically changed the test function. In a setting
where a tester can spin up a production-like local test
environment in seconds with tools such as Docker
and Kubernetes, front-loading test-effort has never
been easier.

Dare to test in production
Testing in production was once seen as a risky
endeavour, but the increased adoption of feature
flags has mitigated that risk. As a final quality gate,
there’s no substitute for testing in the production
environment, under real-world conditions. Feature
flags are also an excellent enabler for A/B testing with
real users who can provide invaluable insights you
won’t always get from traditional testing.

Try out new tools
Finally, new tools such as Puppeteer and Cypress
have the potential to overhaul UI testing for the
better. Focussing on speed and reliability, automation
can act as a conduit to continuous deployment and
continuous delivery – like never before. For too long,
UI automation has been a pain point to so many, as
teams struggle with reliability and execution times.

If these tools live up to their promise, these struggles
may become a thing of the past.

Red Badger | TechLab_Report19 12

Our specialisms
Solving your business’s biggest problems

Observability
We all want reliable production systems that can
recover from problems fast. Observability is key
to making it happen. When your systems are
instrumented with monitoring, logging, and alerting
tools, humans can see what’s going on, get notified if
things go wrong, and take action.

Know the three pillars of observability
Monitoring is the tracking of key metrics and data.
Logging is collecting the details of the occurrence
of events that are happening in your system. And
DevOps teams set up alerting so they’re notified when
something dodgy is happening and can jump in and
investigate the potential issue. Observability may
seem subtle, but it impacts how your instrumentation
is designed and can help guide your choice of tools.

Speed up the diagnosis of new problems
Observability is about focusing the design of your
instrumentation on speeding up the diagnosis of new
problems, instead of monitoring for things you’ve
seen before. DevOps teams often fall into the trap of
creating multiple dashboards that only show things
that have already been instrumented.

You’ve probably seen a dashboard that shows
memory usage and lists of errors, as well as
performance data. This helps as a general overview
of the health of your service, but during a call out or
investigation, engineers spend time browsing these
dashboards for anomalies and then potentially go
on to investigate by diving into logs. The result?
Valuable minutes are lost. And, in order to create such
a dashboard, specific instrumentation has been built
into your code and infrastructure.

Choose tools that bring you built-in visibility
A design more focussed on observability would
instead choose tools that provide more built-in
visibility. The incident response workflow should go
from receiving a callout to the triggering event and
then immediately to searching and correlating event
logs from related systems relevant to the source of
the call-out. The workflow focuses more on asking
questions relevant to the situation than browsing
questions you asked before.

To quickly diagnose issues, you need to be able to
see interactions between processes and services
easily. Service meshes are your friend here. And you
need to store logs so interactive searches can be
super-fast with tools like Prometheus.

The takeaway? Designing for observability, rather than
monitoring, helps reduce time to recovery during an
incident. And it focuses instrumentation on finding the
cause of a problem and fixing it.

Red Badger | TechLab_Report19 13

We’re always trying out new tools
and technology, so we can help
our clients make the right choices
for their businesses. Through
this process, we identify the best
solutions out there and gain a deep
understanding of where and how
to use them. Here are some of
our favourites, along with what
makes them interesting, and why
we like them.

Kubernetes
Jan Kuehle, Software Engineer
Traditionally, highly available, resilient applications
would have to be deployed to a large number of
servers or virtual machines. Having one application
per virtual machine makes it hard to make the most
of your resources. And creating and deleting virtual
machines can take a long time. Containers (such as
Docker) are designed to solve these issues. They
start and stop quickly and improve your resource
utilisation because you can run many containers on
a single machine.

Kubernetes was created to make it easy to manage
containerised applications across many – potentially
distributed – machines. Some of the high-level
features you get with Kubernetes are: automated,
zero-downtime deployments; horizontal and vertical
autoscaling; load balancing across multiple containers
on multiple servers; and container-aware service
discovery through DNS.

All of these work with a declarative API. Users define
the desired state of the application (say, two instances
with load balancing) in their preferred configuration
language (JSON or YAML). Kubernetes performs
the necessary steps to bring the application into the
desired state. This enables a self-healing system. For
example, when one instance of the application dies,
Kubernetes will automatically start a new instance to
maintain the desired state.

The configuration can be stored in files and added to
source control repositories next to the application’s
source code. This neatly ties in with the infrastructure
as code and immutable infrastructure patterns.

Kubernetes is clearly winning as the new standard of
cluster orchestration. Several different providers offer
cloud-hosted or packaged Kubernetes distributions,
making it an obvious strategic choice of an application
platform. That said, Kubernetes is a complex
toolset and, if you’re looking to adopt it within your
organisation, you’ll need a strategy. In our opinion,
Kubernetes makes it possible for small teams to fully
own their infrastructure, for the first time. We’ve given
that strategy a name – microplatforms.

Tools and technology
Supercharging business
transformation

Red Badger | TechLab_Report19 14

Tools and technology
Supercharging business transformation

Service mesh
Tornike Keburia, Software Engineer
The move to cloud-native applications and
microservices architecture brings many well known
benefits, but also creates some new challenges.
One of the trickier problems is managing the
communication between multiple services in a
distributed system.

However small and cohesive the microservices
are, there’s always a set of common problems to
solve in a distributed world, such as routing traffic
to the right service, handling timeouts, balancing
load across instances, enforcing security measures
(authentication, authorisation, encryption), and
making all the communication observable. These
quickly become very complex to manage as more
services are added to your application, especially if
the services are written in different languages, forcing
you to repeatedly implement the same solution for
different technology stacks.

This is where service mesh lends a helping hand.
In a nutshell, the service mesh is another layer of
infrastructure handling all the common networking
functionality. Service meshes don’t really introduce
any new functionality – they just move the logic that
would have to be repeatedly built as part of every
microservice to a separate, centrally-managed
logical layer. Physically, service mesh is a set of side-
car proxies attached to each service. Traffic to and
from services is forced through its respective proxy
which applies various policies as decided by the
global configuration.

Introducing a service mesh into your infrastructure
will reduce complexity and time spent on managing
system-wide policies and complex deployments. And
your day-to-day operations become easier thanks to
the centralised way of viewing, troubleshooting and
maintaining your service communication layer.

While service mesh is a relatively new concept, it’s
built on a foundation of tried and tested, reliable
technologies. The leading one – Istio – is backed by
industry leaders such as Google and easily integrates
with commonly used technologies like Kubernetes.
It’s actively supported and new functionality and
integrations are constantly being added. At Red
Badger, we believe service mesh will soon become a
standard part of any infrastructure solution.

APPLE CAT

Red Badger | TechLab_Report19 15

Tools and technology
Supercharging business transformation

React Native
Matt Paul, Software Engineer
2018 was the year React Native first became a viable
option for many organisations – the year when the
question changed from ‘Why?’ to ‘Why not?’.

At first, React Native was ‘simply’ a platform for
building native-feeling applications with native
UI widgets, but in JavaScript and using React – a
widely adopted, declarative UI library that many web
developers have become big fans of in recent years.
Over time, the number of target platforms has grown.
In addition to iOS and Android, we can now target
Apple TV, VR, and even Windows applications,
Xbox, and – interestingly – web. The web version of
React Native is an entirely different beast from the
original web version of React and is much closer to
React Native in the building blocks it uses, which
makes components portable across the React Native
target platforms.

For many organisations, apart from managing
increased expectations from consumers, increasing
the number of platforms can result in increased
adoption due to the wider audience now able to
access the application. The ability to target multiple
platforms has made React Native an ever-more
compelling strategic choice for user interface.

Combine this with the sharing of component libraries
across teams utilising other tools in the React
ecosystem, such as Storybook, and the era of platform
agnostic UI development and design systems is here.
On a recent client project, we saw around 80% code
reuse whilst targeting three platforms – iOS, Android,
and web with React Native Web. After an initial setup
period, speed of delivery increased significantly.

Fundamental to its success, React Native has a
vibrant community of contributors and companies
moving it forward, including tech giants such as
Facebook and Microsoft. Given this plus the fact
that the underlying technology is React – a battle-
hardened and widely-used library – stakeholders
can feel warm inside knowing that there’s a
considerable ongoing investment, reducing the risk
of a technological dead end.

While React Native is a strong proposition, there are
a number of considerations you must take into
account, especially if you have existing native
development teams in place. Given the unfortunate
tribal nature of software development, it’s important
to take care to integrate these groups without friction.
You can be sure that a few toes will be trodden on
until the dynamic is established. The experience
of Airbnb, which stopped using React Native, is an
interesting case study showing it’s not necessarily a
solution for everybody.

APPLE CAT

Red Badger | TechLab_Report19 16

Tools and technology
Supercharging business transformation

Golang (Go)
Sam Taylor, Tech Director
We’re big fans of functional languages but we can
appreciate a very well designed imperative language
when we see one. Golang (Go) is a great example. It’s
statically typed. The huge benefit? The compiler and
static analysis tools can do a lot of checking that your
test suite or users would otherwise end up doing.

Go’s design philosophy is instructive and opinionated,
making plenty of useful decisions for you so your
engineers don’t fall into a choice paradox. For
example, Gofmt defines how your code will be
formatted so you don’t have to. And unit test tooling
is built-in, making tests look familiar in every project.

Sometimes it feels like hard work to code in Go,
especially if you’re used to dynamically typed
languages like Ruby or Python, but that extra work
is coding type information the compiler needs, or
explicitly handling errors. These are both examples
of Go’s design being more sympathetic to the
machine and the realities your program will face
at runtime. It has concurrency features built in as
language primitives and a preference to pass by
value, both of which make it easier to design robust
concurrent systems.

Using Go feels slightly laborious and intellectually
frustrating if you love FP but, in return, you end
up having to make fewer decisions and getting
more robust services. The result? A boost to your
productivity. It’s great for infrastructural services, APIs,
and command line tools. Though when it comes to
data transformation, prototyping, or view-rendering,
Go is good, but by no means excellent.

APPLE CAT

Red Badger | TechLab_Report19 17

Tools and technology
Supercharging business transformation

Docker
Andy Cumine, Software Engineer
Billed as the solution to the ‘it works on my machine’
problem for building your project infrastructure,
Docker is now the go-to tool for containerised
infrastructure. Docker’s concept of storing build
configuration in the project codebase (Dockerfiles)
gives you more understanding of your project
infrastructure, as this configuration can now be
included in the project source control.

The declarative nature of Dockerfiles, and the high
quality, up-to-date documentation of the Docker
ecosystem makes for an easy-to-learn, simple, and
reliable build tool, as well as runtime which scales well
with an increasing load. With the Docker for Desktop
application bundling the base Docker engine plus
docker-machine, swarm, and Kubernetes support,
the setup speed from nothing to a full containerised
infrastructure is much lower than during Docker’s
initial release a few years ago.

As a result, it’s almost trivial to set up a small-
scale replica of your production infrastructure on a
developer’s laptop. Although your mileage may vary
depending on your application’s resource needs –
some simply don’t fit on a single laptop. This brings
you the previously hard-to-achieve ability to test
your fully integrated system locally. Here, it can be
much more easily poked and prodded to reproduce
the issues and complex behaviours distributed
systems exhibit.

Containers are also being used to run jobs that finish
in a finite time – batch processes, build jobs and other
similar tasks – as people are realising the full potential
of having a portable runtime format that can be run on
a platform, such as Kubernetes. GitHub Actions uses
this capability, along with community-managed base
image ecosystem, to deliver a highly customisable
continuous integration service where you don’t need
to worry about a tool’s availability. You can just build
them into your build step’s base image.

Even enterprise engineering solutions can leverage
Docker now. A full enterprise level version of Docker
is available with all the support you’d expect to come
with an enterprise-level product.

Simply put, if you haven’t yet used or at least tried
Docker on a project, there are very few reasons not
to. The lower level building blocks of Docker are
also being open sourced and ownership is being
transferred to the community. The container standard
is here to stay, regardless of what the future may hold
for Docker as a brand and company.

APPLE CAT

Red Badger | TechLab_Report19 18

Tools and technology
Supercharging business transformation

Terraform
Tom Grimley, Software Engineer

Terraform is now a well-established tool for managing
your infrastructure. And for good reason. The ability
to tear down and reliably recreate your infrastructure
is extremely useful. Gone are the days of flicking
through a myriad of complex GUIs, or manually typing
commands into a remote console. Now everything
can be managed straight from the CLI, in your own
codebase – with just a few keystrokes.

Terraform is a popular open source project with wide
support for many different infrastructure providers, so
chances are it’ll cater for your infrastructure needs. A
thriving community means updates and features are
regularly provided and, even if not, pull requests can
be made or custom providers can be written.

The language itself is easy to pick up, with the
declarative HCL providing a simple and easily human-
readable syntax for the configuration files Terraform
relies on. Knowledge of only a handful of commands
is enough to get started using Terraform effectively.
For new projects, it’s a no-brainer. For the more
established projects out there, there’ll be a period
of slight pain as you collate and write down all your
infrastructure into Terraform.

Having all your infrastructure changes committed
alongside your application’s code simplifies your CI/
CD processes and helps document your infrastructure.
Much handier than a plethora of dusty old readme
files. The greater transparency these committed
changes offer during the review process helps makes
sure the right architectural decisions are made.

Terraform certainly has a bright future and is well
worth the initial investment. Whether you’re creating
additional environments, performing migrations,
responding to the changing demands of your system
or recovering from outages, it all becomes far more
manageable with Terraform. Infrastructure becomes
part of the work of an autonomous delivery team,
rather than a separate part of your organisation.

APPLE CAT

Red Badger | TechLab_Report19 19

Tools and technology
Supercharging business transformation

Statically typed languages
Joe Paice, Tech Director
Static type checking is the process of verifying the
safety and reliability of a program based on analysis of
the program’s source code. While we’ve had statically
typed languages for a long time, in recent years more
advanced statically typed languages have become
a common choice for web and mobile front-end
development. The dynamic, runtime type checking of
traditional JavaScript is being replaced with static type
checking at compile time in languages like ReasonML,
Flow, Typescript, or Elm.

So, why the change? Statically typed languages can
bring a number of benefits. Types take what used
to be implicit in a dynamic language and make it
explicit in a statically typed one. They help document
intent, and in many cases can replace entire classes
of manually written tests that may have previously
been needed to ensure the same level of quality in a
dynamic language.

Certain statically typed languages are able to analyse
the program and make sure it’s ‘correct’ and cannot
fail at runtime in an unexpected way. Some statically
typed languages also enable tools to fill in gaps and
suggest how to complete the jigsaw of a program,
increasing programmer efficiency while maintaining
correctness of code. Some tools can even optimise
code performance based on the types, resulting in a
better performing program.

With these benefits, why would you ever use dynamic
languages? Depending on the use case, you might
be willing to trade off correctness for being able to
rapidly prototype an idea without thinking of every
single eventuality. In these instances, a dynamic
language may actually be a better fit to avoid jumping
through unnecessary hoops to solve a problem.
Switching to statically typed languages will also
likely demand a different approach to the code itself.
Patterns that the programmer may not be familiar with
are used to ensure the code will pass static analysis
and subsequently compile.

For code that you want to deploy to production, which
needs to be reliable, the explicit statement of intent
that’s verified at build time is super-beneficial. This,
paired with the guarantee that what is written won’t
fail at runtime, makes statically typed languages a
great choice for production applications.

APPLE CATAPPLE CAT

Red Badger | TechLab_Report19 20

Tools and technology
Supercharging business transformation

Monorepos
Viktor Charypar, Tech Director
The traditional way of managing your organisation or
department’s codebase – the sum of all the different
kinds of code that contribute to your product – is to
store each component, service, tool, infrastructure
or testing automation separately, each in their
own repository. This is clearly inspired by the way
open source software development is done, where
every small tool or library is built by a different person
or team.

In many organisations, this is often not the case.
Frequently, the same group of people work on all of
these things together, which allows for a much more
light-weight management of the various components
and their mutual dependencies, enabling the removal
of strict repository boundaries and instead of storing
all of your codebase in a single repository – a so-
called ‘monorepo’.

Monorepos have several benefits compared with
the traditional strategy, recently dubbed ‘poly-repo’.
To start with, everyone has visibility of the entire
codebase and can contribute (with review) to every
part of it, helping to foster a culture of collaboration.
Continuous integration and delivery systems can be
set up once for everyone. And having a single timeline
of changes allows for changes to be made to several
components of your overall system, in sync.

Knowing the dependencies between the components,
these can be automatically tested, even against all
of their known consumers, drastically reducing the
feedback time on changes made, when compared
to the traditional, semi-manual versioned release
workflow. As long as your automated testing is
thorough, broken changes don’t even make it into the
master branch, let alone in front of customers.

With tools like Kubernetes, Istio, and Terraform all
the code contributing to your product can be stored
together and changed together, allowing you to treat a
distributed application like a monolith. The boundaries
of various applications and systems are also more
flexible this way, enabling easy changes in ownership
and helping you avoid the pitfalls of the infamous
Conway’s Law.

Tooling for monorepos is still not as well developed
as we’d like, but there’s a clear trend towards teams
joining their poly-repos together and the tooling (e.g.
GitHub) improves to follow. The only remaining issue
to solve if your organisation grows to a large scale
(we’re talking hundreds of engineers over several
years) is scaling the repository management service to
match. But fortunately, the industry giants have blazed
that trail for us and can offer some solutions.

Our take on monorepos? They make the development
of moderately complex systems faster. They make
thorough continuous integration and automated
testing easier. And they lower the barriers to
safely sharing code across projects. Plus, they’re
a good strategic choice for a flexible source code
management strategy – one that’ll set you up for
the future.

APPLE CAT

Red Badger | TechLab_Report19 21

Tools and technology
Supercharging business transformation

Deconstructed CI services
Xavier Delamotte, Software Engineer
Continuous integration is a common practice in the
industry and it’s effectively a baseline requirement
for continuous delivery. Every commit should
automatically trigger a build that will check the code,
run automatic tests and eventually deploy the current
state of the application for further testing or even to
your production environment.

Right now, there are many cloud-based CI services
available that are easy to set up. These are sound
solutions when you’re starting a project. At the other
end of the spectrum, for bigger and more complex
projects, there’s usually already some tooling set up
on-premise and specially configured for the needs of
your project. Jenkins is a common choice.

Recently, a new breed of CI services has emerged.
These split the traditional monolithic CI system into
parts, some of which run in the cloud, making them
easy to set up. Others can run elsewhere, giving
you a finer control over your builds. They effectively
deconstruct the CI system into two main parts. First
up, orchestration – coordinating with your source
code repository and deciding what to build and when.
And runtime – actually performing the build, testing,
and deployment jobs.

Two of these next gen CI services have caught our
attention – Buildkite and GitHub Actions. Buildkite is
based on two concepts. Pipelines describe the steps
and actions you’d like to execute (managed as code
in your codebase). Agents are build runners that
will poll the jobs that need to be executed from the
orchestration engine at buildkite.com.

You can manage your set of agents directly, run jobs
on your own infrastructure, and scale as much as
you want. If you need to make more builds, you can
just increase the number of agents picking them up.
This also means your code never has to leave your
network. Pipelines can be defined as static files,
saved in your repository, but they can also be dynamic
templates. It gives you great flexibility in the ordering
of your builds. In our case, in a monorepo we can only
build what is needed and independent tasks can run
in parallel.

GitHub Actions were introduced during the last GitHub
universe and are still in beta. You can define workflow
of actions triggered by events on your repository and
actions are then executed inside Docker containers
of your choosing (described as Dockerfile). Workflows
can be created with a visual editor or directly edited
as text files, using a subset of the HCL language used
by Terraform, for instance. This makes it really easy
to build small blocks of operations and tests on your
repository orchestrated by the workflow.

There are already many existing open source actions
that can be reused in your project, making it easier
and faster to set up your own workflow. Unlike
Buildkite, Github Actions don’t, at the moment, give
you control over where or how these actions will be
executed – they run on GitHub’s runtime.

The common theme in these new services is the
understanding that a runtime to run CI jobs isn’t that
different from a runtime to run your service. And it
should really be decoupled from the triggering of jobs
and orchestration of what runs in which order. We
expect the trend to continue, leading to more flexible,
scalable and cheaper-to-operate continuous delivery
automation.

Red Badger | TechLab_Report19 22

Tools and technology
Supercharging business transformation

Design systems
Rob Brathwaite, Design Director
The term ‘design system’ has been gaining traction
in the last few years. Companies across the globe
are either thinking of, are in the process of, or have
just finished (if that’s even possible) building one. But
what’s all the fuss about? What are design systems
and why do we need them?

In her book, Thinking in Systems, Donella H. Meadows
described a system as being an ‘interconnected set
of elements, that are coherently organised to achieve
something.’ This phrase perfectly encapsulates what
a design system is and points to the benefit they
provide. That’s a great start, but let’s get a bit more
specific. Nathan Curtis, a giant in the design systems
community, crafted this definition of design systems:

‘Almost always, a design system offers a library
of visual style and components documented
and released as reusable code for developers
and/or tool(s) for designers. A system may also
offer guidance on accessibility, page layout,
and editorial and less often branding, data viz,
UX patterns, and other tools. A design system is
adopted by and supported for other teams making
experiences. These teams use it to develop and
ship features more efficiently to form a more
cohesive customer journey. A design system is
made by an individual, team, and/or community.
While some arise less formally, organisations now
dedicate small to large squads to develop and
release system versions and processes over time.’

Based on these definitions, design systems sound
really awesome already. But let’s look at the value you
get for all the investment needed to build one. Picture
this – you’re a global organisation, building digital
products. Your teams are distributed across the world.
How do they know what UI code to share? When
should they share? How do they share their intent
and decisions and make them visible to the rest of the
organisation? Design systems have answers to these
questions, and more.

Here’s a small taster of what a design system can do
for you. The ability to onboard a new team member
with a link to your design system is powerful. The
one-to-one relationship between code in production
and description in the system documentation makes
your products easily discoverable when onboarding
new developers and designers to your team. It will
also simplify rotations from one team to another as
everything should feel familiar.

APPLE CAT

Red Badger | TechLab_Report19 23

Tools and technology
Supercharging business transformation

A well implemented system will, by its very nature,
drive consistency. Having a single point of reference
for engineering and UX decisions will smooth some of
the kinks in your product delivery and result in a better
experience for your users. Time is extremely precious
and, let’s face it, no one wants to rebuild that red
button for the nth time. With a robust set of pre-built
components, patterns and guidelines to drive their
use, the amount of code and the time needed
to develop the UI for your product will decrease.
This should also streamline the testing strategy for
your app.

Bringing design and engineering closer to together
will ultimately lead to a better product and a healthier
culture. Being able to confidently say “The content
for this select is XYZ” and have everyone in the room
actually know what a select is will minimise confusion,
one of the most costly sources of defects.

Design systems are as much about people as they are
about building products. A design system is a product
that serves delivery teams (groups of people) allowing
them to build great products quickly and consistently
for their users (also people). Design systems are by no
means a silver bullet, but they go a long way towards
optimising product delivery and helping teams make
brilliant products.

Red Badger | TechLab_Report19 24

Our engineering principles
Making tech work for you

We’re excited to share the guiding
principles that underpin all Red
Badger’s engineering decisions, from
our practices and processes to the
solutions we design and the tools
we choose.

These values empower our teams
to experiment and progress
autonomously, all while staying
aligned. And they help us bring our
clients and their customers the best
insights and support.

Customer-centric
Customer needs always come first – they’re what
drives our engineering decisions. This is why you’ll
always find a UX designer on our teams. Yes,
technology can and should support business needs,
automating processes, reducing costs and enabling
new ways of working. But customers should
forever be number one. That’s how you’ll achieve
business success.

Technology should solve customers’ problems in new
and better ways. Digital products have an unparalleled
ability to gather customer insights and adapt and
evolve accordingly. This benefit must be harnessed, to
unlock continuous improvement and meet individual
users’ needs ever more closely.

Autonomy and alignment
Autonomy and alignment is the best way to scale
engineering. Alignment focuses teams on the
outcomes, not the approach. When this is paired with
autonomy, those with the most context on a problem
are set up to solve it. This results in better solutions,
less reliance on individuals and leads to more efficient
and empowered teams.

Clear expectations and accountability are key to
achieving alignment, and care needs to be taken
to avoid autonomous anarchy. Like in horizontally
scalable systems, an engineering organisation
successfully built on autonomy and alignment can be
scaled by simply adding great teams. Those engineers
are also more likely to stick around because they have
everything they need to do what they do best.

Red Badger | TechLab_Report19 25

Our engineering principles
Making tech work for you

Continuous delivery
and just-in-time decisions
Technological innovation demands constant change.
Overhauling digital products once every six months
is not enough to keep up, and it’s neither smart nor
sustainable. We must shorten iterations as much
as possible to enable a constant flow of value to
customers. Enter continuous deployment – the
primary capability engineering organisations should
focus on.

Continuous deployment allows responsiveness
and extreme agility, and removes an entire class of
problems created by scheduled weekly or monthly
releases. It also forces building quality into the
process and enables an incremental approach to
delivery. In turn, this means all decisions can be
made just-in-time, when they’re needed. Just-in-time
decision making allows us to solve problems when
they actually arise and take action with as much
insight as possible.

Simple solutions
and declarative programming
Simplicity matters. When designing systems,
complexity should be reduced to the absolute
minimum. There are essentially no tools to manage
growing complexity, software systems tend to grow
orders of magnitude more complex than a single
human can understand, and simplifying an existing
complex system takes huge amounts of focused effort.

The best way to reduce complexity is to start small
and iterate quickly, composing systems from small
building blocks that do one thing and do it well. This
involves making intentions as explicit as possible at
every stage. The approach we favour is declarative
programming, focused on outcomes. We describe
the goal state and let our tools work out the way to
achieve it. When evaluating tools, the ability to declare
intent simply and explicitly is the main design feature
we look for.

Red Badger | TechLab_Report19 26

Our engineering principles
Making tech work for you

Everything as code
Code is the most complete and explicit specification
of a solution. Everything that can be written down
as code and automated, should be. This allows us
to apply engineering to everything from low-level
business logic to the large-scale system design.

What makes code so great? It’s stored in version
control systems capturing the history and evolution
of the solution. And processes written down as
code are repeatable and testable. The alternatives
are lacklustre – information that’s only present in
a running system or people’s minds, or out-of-date
documentation. High levels of automation also allow
higher degrees of autonomy. Application logic, testing,
configuration, deployment, and infrastructure should
all be managed as code.

Always learning
The industry is rapidly changing. At Red Badger, we
know the only way to keep up is by staying curious,
and always learning. We’re constantly discovering new
approaches, trying new tools and evaluating the latest
technologies. This fuels our engineering capabilities.

Experimentation is key. Others stick to what they
know and repeatedly roll out the same strategies.
But every time we start a new project, we keep an
open mind and look for new tools and technologies.
We end up with a balanced blend – around 20% new
technologies, and 80% tried and tested favourites.

To push the boundaries of knowledge, it’s important
to be bold and bet on upcoming, innovative trends.
Sometimes it’s better to ask for forgiveness rather
than permission and learn from safely failing.
Experimenting, learning and applying the results is the
best way to stay ahead.

TechLab_Report19

Our view on what matters in tech

Red Badger | TechLab_Report19 27

A	
Agility... 4, 25
Anarchy... 6, 24
Android...15
Always learning...26
Autonomy..5, 6, 6, 11, 24, 26
— Autonomous delivery teams............................... 18
APIs.. 4, 11, 13, 16
	
B	
Buildkite..21
	
C	
Cloud-native applications.. 14
Cluster orchestration... 10, 13
Component libraries..15
Containers.. 10, 13, 17, 21
— Containerised applications................................. 13
Continuous delivery.......5, 6, 8. 9. 10, 11, 20, 21, 25
Continuous deployment..25
Continuous integration (CI)......................... 17, 20, 21
CI/CD.. 9, 18
CLI (Command-line interface)................................ 18
Common problem areas......................3, 4, 5, 6, 7, 8
Complexity..14, 25
Conway’s Law..20
Cross-functional teams..4, 8
Customer-centric...24
	
D	
Data-driven product management..........................4
Data transformation..16, 22
Declarative programming.......................................25
Deconstructed CI services.......................................21
Delivery processes..4
Design systems...15, 22, 23
DevOps.. 2, 12
Distributed systems... 17
Docker..5, 10, 11, 13, 17, 21
Dynamic languages...19

E	
Elm..19
Empowering teams.. 6, 24
Engineering culture.. 7, 8
Engineering principles..........................3, 24, 25, 26
Everything as code..11, 26
Experimentation..7, 26

F	
Flow...19
	

G	
Get set for what’s next... 2
GitHub Actions...17, 21
Golang (Go)..16
GUI (graphical user interface)................................. 18
	
H	
HCL..18, 21

I	
Infrastructure (as code)3, 5, 10, 13, 17
— Infrastructural services...16
— Infrastructure solution.. 14
Introduction to TechLab Report............................... 2
iOS..15
Istio...2, 14, 20
	
	
J	
JavaScript...15, 19
Jenkins..21
JSON... 13
Just-in-time decisions..25
	
K	
Kubernetes.............................2, 5, 7, 10, 13, 14, 17, 20

M	
Microplatforms.. 13
Microservices... 2, 14
Mobile front-end development...............................19
Monorepos..20, 21
	
N	
Native..7, 15
	
O	
Open source... 7, 17, 18, 20
Orchestration.. 2, 10, 13, 21
Observability... 2, 6, 11, 12
	
P	
Pipelines.. 9, 21
Principles..3, 24, 25, 26
Problem areas... 4-10
Production applications..19
Prototyping... 4, 16, 19
Python...16

R	
React Native..7, 15
ReasonML...19
Reliability... 5
Risk management..4
Ruby...16
	
S	
Service mesh.. 2, 12, 14
Statically typed..16, 19
Silo... 7, 8
Specialisms..9-12
Strategic choice...15, 20
Storybook...15
Speed of delivery.. 4, 15
Scale... 5
Strategic direction... 6

T	
Technology..5, 13-23
Terraform.. 10, 18, 20, 21
Testing strategy.. 8, 23
— Testing... 11
Tools and Technology...13-23
Typescript...19

U	
UI library..15
User interface..15
User interface (UI)... 17, 20
	
V	
Virtual machine (VM)... 10, 13

Y	
YAML... 13

TechLab_Report19

Our view on what matters in tech

Want to dive deeper into the topics covered in this report?
Join us at our upcoming TechLab event.

Sign up now

Contributors
Thanks to all the Badgers who contributed to this report:

 Special thanks

Ac
Andy Cumine

29

Gd
Greg Dorward

97

Jk
Jan Kuehle

142

Ac
Abigail Coe

156

Ai
Andrei Ionescu

102

Ah
Andy Haines

113

Cb
Chris Brookes

42

Cg
Chris Gray

46

Jp
Joe Paice

76

Jy
Jon Yardley

52

St
Sam Taylor

88

Cc
Chris Caller

127

Cw
Cris Wilgenho�

121

Dt
Dan Train

134

Db
David Basalla

143

Ds
Declan Slevin

138

Sw
Sam White

74

Sh
Stuart Harris

01

Ts
Tim Stott

120

Dp
Dominik Piatek

45

Ec
Ed Compton

168

Hl
Haro Lee

07

Jr
Jack Rehaag

152

Js
Jenny Sharps

166

Tg
Tom Grimley

148

Tk
Tornike Keburia

157

Mp
Matt Paul

125

Js
Joe Stanton

04

Jp
Joseph Popoola

178

Jo
Julian Osman

115

Kp
Kyle Patel

151

Mh
Mark Holland

144

Mf
Monika

Ferencz-Szabo

46

Rb
Rob Brathwaite

123

Mi
Mishal Islam

132

Nc
Nico Castro

34

Xd
Xavier Delamotte

145

Vk
Viktor Charypar

17

Sb
Samera Butt

09

Sa
Simon Ashbery

180

Pm
Pedro Martin

140

Rg
Rane Gowan

161

Rc
Robbie McCorkell

25

Ss
Sam Smith

101

Tb
Tom Barwick

165

Tw
Tracy Wu

128

Sign up now

https://lp.red-badger.com/enter-details-red-badger?utm_campaign=TechLab%20Campaign&utm_source=PDF%20report%20sign%20up%20for%20event&utm_content=sign%20up%20for%20tech%20event%20in%20techlab%20pdf%20report

	Service mesh

